
cr) 
I 

n 
a c 
4 
c/) 
4 z I 

SUMMARY OF THERMOPHYSICAL 
PROPERTIES OF POTASSIUM .. 

by Harold H. Coe 
Lewis Reseurch Center 
Cleuekznd, Ohio 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M l  N l S T R A T l O N  - WASHINGTON,  



ERRATA 

NASA Technical Note D-3120 

SUMMARY OF THERMOPHYSICAL PROPERTIES OF POTASSIUM 

by Harold H. Coe 

December 1965 

Page- 21: The ordinate scale for Density, g/cc,  should be 10- 2 instead 
6 3 of IO- IO- . 

Issued 6-9-67 NASA-Langley, 1967 



TECH LIBRARY KAFB, NM 

I llllll I Illll lllll I lllll1 Ill1 Ill 

SUMMARY O F  THERMOPHYSICAL PROPERTIES OF POTASSIUM 

By Harold H. Coe 

Lewis Research Center 
Cleveland, Ohio 

N ATlON AL AERONAUT ICs AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $2.00 



CONTENTS 

Page 
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

INTRODTJCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

PHESENTATION OF RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

SATURATED LIQUID PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . .  4 
Density (F ig  . 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
Viscosi ty  (F ig  . 2)  . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
Surface Tension (F ig  . 3)  . . . . . . . . . . . . . . . . . . . . . . . .  6 
E l e c t r i c a l  Res i s t iv i ty  (F ig  . 4)  . . . . . . . . . . . . . . . . . . . . .  8 
Thermal Conductivity (Fig . 5)  . . . . . . . . . . . . . . . . . . . . . .  10 
Enthalpy (F ig  . 6 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 2  
Specif ic  Heat (F ig  . 7 )  . . . . . . . . . . . . . . . . . . . . . . . . .  14 
Entropy (F ig  . 8 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

SATURATED VAPOR PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . .  18 
Vapor Pressure (F ig  . 9 )  . . . . . . . . . . . . . . . . . . . . . . . . .  18 
D e n s i t y ( F i g . 1 0 )  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 
Viscosi ty  (Fig . 11) . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 
Thermal Conductivity (F ig  . 1 2 )  . . . . . . . . . . . . . . . . . . . . .  22 
Heat of Vaporization (F ig  . 13) . . . . . . . . . . . . . . . . . . . . .  22 
Entropy of Vaporization (Fig . 1 4 )  . . . . . . . . . . . . . . . . . . . .  26 
Specif ic  Heat (Fig . 15) . . . . . . . . . . . . . . . . . . . . . . . . .  28 
Enthalpy and Eqtropy (F ig  . 1 6 )  . . . . . . . . . . . . . . . . . . . . .  31 

CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 



SUMMARY O F  TKERMOPHYSICAL PROPERTIES OF POTASSIUM 

by Harold H. Coe 

Lewis Research Center 

SUMMARY 

Recently reported thermodynamic and physical property data  on the  a lka l i  
metal potassium a r e  compiled and the  r e s u l t s  of t he  various sources a r e  com- 
pared w i t h  previously ex is t ing  data.  D a t a  f o r  t h e  l i q u i d  propert ies  of spe- 
c i f i c  heat, thermal conductivity, enthalpy, entropy, viscosi ty ,  e l e c t r i c a l  r e -  
s i s t i v i t y ,  density,  and surface tension a re  presented over the  temperature 
range from 200' t o  2200' F when possible .  Data f o r  t he  saturated vapor prop- 
e r t i e s  of spec i f i c  heat,  thermal conductivity, vapor pressure,  heat of vapor- 
iza t ion ,  entropy of vaporization, v i scos i ty ,  and densi ty  a re  presented over t he  
temperature range from 800' t o  2200° F. 

The r e s u l t s  from the  several  sources agree very well  fo r  most of t he  prop- 
e r t i e s  i n  the  lower temperature range up t o  about 1400' F. 
cant differences a r e  apparent f o r  some of the  propert ies  a t  temperatures above 
1400' F. 

However, s i g n i f i -  

INTRODUCTION 

The a l k a l i  metals, such as sodium, potassium, rubidium, cesium, and l i t h -  
ium, have physical,  thermodynamic, and t ranspor t  propert ies  t h a t  make t h e m  a t -  
t r a c t i v e  f lu ids  fo r  elevated temperature appl icat ions.  For t h i s  reason, a l k a l i  
metals a re  being considered fo r  use as reac tor  coolants and as working f l u i d s  
i n  space power generation systems. Although t h e  values of some of these prop- 
e r t i e s  had been establ ished e a r l i e r ,  it became evident i n  recent  years t h a t  
more experimental data  were required,  not only t o  extend the  temperature range, 
but a l s o  t o  resolve discrepancies t h a t  ex is ted  a t  t h e  lower temperatures. 

Beginning i n  1960, severa l  programs were i n i t i a t e d  by NASA and the  USAF 
(WADD) t o  determine and compile the  propert ies  of t h e  a lka l i  metals. The re- 
sults of a USAF contract  w i t h  Southwest Research I n s t i t u t e  f o r  co l lec t ion  of 
property data on a number of mater ia ls  including the  a l k a l i  metals were pub- 
l i shed  i n  1961 as reference 1. This repor t  w a s  considered one of t he  bes t  
sources of  property da ta  p r i o r  t o  the  recent  publ icat ion of the r e s u l t s  of many 
of t h e  other invest igat ions (refs. 2 t o  2 4 ) .  

The majority of t h e  published repor t s  were concerned w i t h  potassium, one 



of the  more widely used a l k a l i  metals. There are many design and experimental 
s tud ies  of Rankine cycle space power generation systems with pr inc ipa l  i n t e r e s t  
a t  present on potassium as the working f l u i d .  These s tudies  include the  SPUR- 
SNAP 50 program ( re f .  25), t he  General E lec t r i c  bo i l ing  and condensing inves- 
t iga t ions  (ref.  26), and severa l  inhouse programs a t  t h e  NASA Lewis Research 
Center. In  a l l  of these programs, accurate property data a re  required for de- 
s ign  procedures and s tudies  and for  analysis  of experimental and theore t ica l  
results. 

The object of t h i s  repor t  i s  t o  compile t h e  recent ly  reported property 
data  on potassium, t o  compare the  results of t he  various sources with previ-  
ously ex is t ing  data,  and t o  ident i fy  any areas of discrepancy s o  t h a t  t he  de- 
signer can e s t ab l i sh  bes t  judgement i n  the  use of t he  avai lable  propert ies .  
Data on the  sa tura ted  l i q u i d  propert ies  of density,  viscosi ty ,  surface tension, 
e l e c t r i c a l  r e s i s t i v i t y ,  thermal conductivity, enthalpy, spec i f i c  heat, and en- 
tropy a re  presented over t he  temperature range from 200' to 2200' F when pos- 
s i b l e .  Data on the  sa tura ted  vapor propert ies  of vapor pressure, density, v i s -  
cosity,  thermal conductivity, heat of vaporization, entropy of vaporization, 
and spec i f ic  heat are presented over the  temperature range from 800' t o  2200' F. 
The sa tura t ion  l i n e s  on an enthalpy-entropy diagram a r e  a l s o  presented. I n  fo r -  
m a t ,  the  values determined i n  the  recent  experimental programs (refs .  2 t o  16) 
a re  compared with t h e  values reported i n  reference 1 and other previous data  
sources. 

PRESECJTATION OF RESULTS 

The data  are presented graphically with property values p lo t ted  against  
temperature, and comments are presented concerning the method each source em- 
ployed i n  obtaining i t s  data.  The curves are numbered t o  f a c i l i t a t e  reference 
i n  the  t e x t .  

In  order t o  make comparisons of the data,  a l l  property values were con- 
verted t o  the  English system of units, with the  metric system of uni t s  shown 
on the  graphs f o r  convenience. 
sources fo r  each property were calculated and are noted i n  the  comments on the  
individual propert ies .  

The percent differences between the  data  

The presentat ion of the  comparisons has been separated i n t o  saturated l i q -  
uid propert ies  ( f i g s .  1 t o  8) and saturated vapor propert ies  ( f i g s .  9 t o  1 6 ) .  

It should be noted t h a t  some work on potassium propert ies  i s  s t i l l  i n  prog- 
ress by Aerojet-General Nucleonics (AGN) and MSA Research Corporation (MSAR) 
( r e f s .  16 and 20) and t h a t  the  data  presented from t h e  U. S. Naval Research 
Laboratory (NRL) (refs.  3 and 11) and MSAR ( refs .  4 and 8) a re  from inter im 
progress reports  and are not from a f i n a l  technical  report .  A s  t he  present 
repor t  w a s  being published, potassium property data  were made avai lable  by the  
rJRL f i n a l  technical  repor t  ( re f .  2 7 )  and were added t o  the  appropriate graphs. 
However, t he  NRL preliminary values were l e f t  i n  t he  present work for  compari- 
son because the  two progress reports  (refs.  3 and 11) show the  results of two 
d i f fe ren t  methods of determining property data.  I n  t h e  f i n a l  repor t  ( ref .  2 7 ) ,  

2 
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Figure 1. - Density of potassium liquid. 
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NRL determined the  propert ies  by the  same method out l ined i n  reference 11, and, 
although an e r ro r  w a s  found i n  t he  coef f ic ien t  of expansion of niobium-1 z i r -  
conium, the  f i n a l  sa tura t ion  values were only s l i g h t l y  changed from the  prelim- 
inary data, with the  exception of t h e  spec i f i c  heat  of t he  sa tura ted  vapor. 

SATlJRATED LIQUID PROPERTIES 

Density (Fig. 1) 

In 1948, NRL (ref. 28) presented a bes t  l i n e  through the  experimental den- 
s i t y  data  of Ewing,'et al. ( r e f .  2 8 ) ,  WAR, Rinck ( r e f .  29),  and Hagen ( r e f .  30). 
Values of densi ty  from t h i s  bes t  l i n e  were then given i n  t ab le  2 .2  of r e fe r -  
ence 31 and i n  t ab le  1-14 of reference 32 and a r e  shown as curve 1 i n  f igure  1. 
General E lec t r i c  (GE) ( r e f .  33) extrapolated the  data  from reference 31 t o  tem- 
peratures  above 1300O F, and WADD reported the  GE values i n  reference 1; these 
values a r e  shown as curve 2 .  

Ba t t e l l e  presented an equation i n  reference 5 derived by them t o  f i t  the  
data  from reference 32 and a p r iva t e  communication from Eking of NRL. Values 
of density calculated from t h i s  equation were tabulated i n  t ab le  C-2  of r e fe r -  
ence 2 and a r e  shown as curve 3. 

The values f o r  the  NRL curve (curve 4) were calculated from an equation 
presented i n  reference 3, derived by I\JRL as the  bes t  curve f i t  t o  t he  experi-  
mental density data  of Hagen ( r e f .  30) and Ewing, e t  al. ( r e f .  28) a t  lower 
temperatures, Movikov, e t  a l .  (ref. 34), Jackson, e t  a l .  ( r e f .  35), and Rinck 
( r e f .  29) a t  moderate temperatures, and Eking, e t  a l .  ( r e f .  36) a t  higher tem- 
peratures .  The data  points  from a quartz dilatometer i n  reference 28 and from 
a pynchnometer i n  reference 36 a re  a l so  shown f o r  comparison. 
values from appendix A of reference 27  l i e  on curve 4.  

The NRL f i n a l  

MSAR presented an equation i n  reference 4 as the  bes t  representat ion of 
the  MSAR experimental data  obtained from a dilatometer over t he  temperature 
range of 470' t o  2000° F. The standard deviation of the  39 data  points  w a s  
0.0014 gram per  cubic centimeter. Density values calculated from t h i s  equation 
a re  shown as curve 5. 

It i s  s t a t e d  by Cooke i n  reference 6 t h a t  t h e  preliminary r e s u l t s  obtained 
up t o  about 1300° F by the  maximum bubble pressure method show good agreement 
with the  composite data  of reference 31 and average approximately 0.4 percent 
higher. These data  then would be very close t o  the  NRL curve (curve 4 ) .  

It can be seen t h a t  t h e  recent  experimental determination of MSAR agrees 

It should be noted tha t  curve 2 has the  wrong curvature and 
very well with the  previous work, with a maximum difference of l e s s  than 2 per- 
cent a t  2000' F. 
thus d i f f e r s  from the  other determinations; t h i s  difference a t  2000' F i s  a 
maximum of about 4 percent.  

4 
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Viscosity (Fig. 2)  

The v i scos i ty  data  obtained by Chiong ( r e f .  37) ,  using a g lass  o s c i l l a t i n g  

Chiong determined these  values using the  densi ty  data  of Hagen 
sphere, a r e  shown i n  f igu re  2.  
f o r  comparison. 
(ref. 30).  

A curve (curve 1) w a s  drawn through the  points  

Eking, e t  al. (ref.  38) obtained some v i scos i ty  da ta  up t o  660° F using a 
nickel  viscometer of t h e  Ostwald type. 
with a curve (curve 2 )  drawn through t h e  poin ts  fo r  comparison. 

These da ta  poin ts  a r e  shown i n  f igu re  2, 

Novikov, e t  a l .  (ref. 39) obtained v i scos i ty  da ta  using the  tors iona l  os- 
c i l l a t i o n  method and the  theory of Shvidkovsky (ref. 40). Values of kinematic 
v i scos i ty  were taken from the  l i n e  through the  data  presented i n  reference 39. 
The absolute v iscos i ty ,  calculated with the  same densi ty  values used for 
curves 2 and 5 i n  order t o  make a b e t t e r  comparison, i s  shown as  curve 3. Ex- 
perimental  da ta  of Kutateladze, e t  a l .  ( r e f .  41), obtained by the  damped t o r -  
s iona l  o sc i l l a t ions  method, were reported by WADD ( ref .  1) and are shown as 
curve 4. 

Ba t t e l l e  ( r e f .  5) determined t h i s  property using t h e  osc i l l a t ing  cylinder 
method and the  Shvidkovsky (ref. 40) equation. Values of absolute v i scos i ty  
calculated from the  two Andrade (ref. 42) type equations presented i n  r e f e r -  
ence 5 as a least-squares  f i t t i n g  of t he  experimental data  a r e  shown as curve 5. 
The standard deviat ion of t h e  points  from the  low temperature (154' t o  698' F) 
equation w a s  0.005 and from t h e  high temperature (6980 t o  2100' F) equation w a s  
0.012. It should be noted t h a t  Ba t t e l l e  also f i t t e d  the  data  over the  e n t i r e  
temperature range with a s ing le  equation of the  Andrade type t h a t  resu l ted  i n  a 
standard deviation of 0.018; it was  obvious t h a t  t h e  data  were b e t t e r  f i t t e d  
with the  two equations. 

It can be seen t h a t  t he  Ba t t e l l e  r e s u l t s  (curve 5) l i e  generally midway 
between the other values presented. Chiong's values a re  about 4 percent lower 
than curve 5 a t  211' F and about 5 percent higher a t  666' F. 
(curve 3) a re  about 5 percent higher than B a t t e l l e ' s  i n  t h e  range from 400° t o  
1000° F but  show good agreement a t  the  higher and lower temperatures. Eking's 
data  a re  about 10 percent lower than B a t t e l l e ' s  over the  range shown. 

Novikov's r e s u l t s  

Surface Tension (Fig. 3) 

Using the  cap i l l a ry  r i s e  method, Eking, e t  a l .  ( r e f .  28) determined an av- 
erage value of about 0.00546 pound per foot (80 dynes/cm) fo r  t h e  surface ten-  
s ion  of potassium over the  temperature range from the  melting point  t o  379' F 
(193' C), assuming a contact angle of zero degrees. The pu r i ty  of t he  potas- 
sium was 99.6 percent.  

Quarterman and Primak ( r e f .  43) a l s o  used the  cap i l l a ry  r i s e  method and 
reported an average value of 0.00587 pound per foot  (86 dynes/cm) from the  melt- 
ing point  t o  308O F (153.4' C ) ,  assuming a contact angle of zero degrees. 
contact angle was  measured one year l a t e r  and determined t o  be 24' t o  26'. 

The 
It 
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w a s  concluded t h a t  t he  ac tua l  contact angle during the  surface tension measure- 
ments w a s  less than 26O, which would r e s u l t  i n  a maximum correct ion of l e s s  
than 11 percent.  The value of surface tension a t  t h e  melting poin t  reported by 
WADD ( r e f .  1) w a s  based on reference 44. 

The data  for  curve 1 were calculated with the  value of surface tension a t  
t he  melting poin t  and the  recommended temperature coef f ic ien t  (-0.11 erg/cm2/OC) 
as determined experimentally by Taylor (ref. 45) using the  maximum bubble pres- 
sure  method with argon as a cover gas. The cor rec t  radius  w a s  determined by 
the  method of Porter  (ref. 46) and t h e  correct ion for t h e  d i s to r t ion  of t he  
bubble from a spher ica l  shape by the  method of Sugden ( r e f .  47).  
t he  potassium used w a s  99.895 percent. The data- s c a t t e r  w a s  approximately 
22 percent.  

The pu r i ty  of 

Preliminary surface tension data  has been reported by Cooke (ref. 6 ) .  The 

The values fo r  curve 2 were ca l -  
data  were obtained by the  maximum bubble pressure method with helium gas and 
employing the  Schrzdinger equation ( r e f .  48).  
culated from a least-squares  equation presented i n  reference 6. The mean- 
square deviation of t he  points  w a s  20.64 dyne per centimeter. A t o t a l  of 
202 determinations were made; however, severa l  values around 400° F (200' C )  
were not included i n  t h e  least-squares  treatment, s ince they were up t o  5 per- 
cent low. A l l  of these low values were recorded shor t ly  a f t e r  t he  i n s t a l l a t i o n  
of a new cap i l l a ry  tube, and it w a s  f e l t  t h a t  these low values were the r e s u l t  
of poor wetting of the  capi l la ry  by the  potassium. 

It can be seen t h a t  t he  preliminary data  of Cooke (curve 2 )  a r e  consider- 
ably higher than Taylor 's  values (curve l), ranging from almost 12 percent a t  
200' F to about 59 percent a t  9000 F. Tne data  of Ewing, e t  a l .  ( r e f .  28) and 
Quarterman and Primak ( r e f .  43) are about 15 t o  2 0  percent lower than those of 
Taylor, with t h e  ac tua l  contact angle i n  considerable doubt. A l a rge r  contact 
angle would, of course, r a i s e  the  values given. It should be noted t h a t  t he  
pu r i ty  of t he  potassium i s  important i n  the  surface tension determination and 
may contr ibute  t o  these discrepancies.  

E lec t r i ca l  Res i s t iv i ty  (Fig. 4)  

The values of e l e c t r i c a l  r e s i s t i v i t y  reported i n  reference 31 were taken 
from the  da ta  of Bornemann and Rauschenplat ( r e f .  49); these values a r e  shown 
i n  f igure  4 fo r  comparison. 
taken from t ab le  A-2 of reference 7; these data  are interpolated values taken 
from a smooth curve v isua l ly  f i t t e d  t o  the  experimental data.  
sured the e l e c t r i c a l  r e s i s t i v i t y  during the  thermal conductivity determina- 
t i o n  by passing a d i r e c t  current through the  specimen and measuring the  vo l t -  
age drop. The e r ror  w a s  estimated t o  be l e s s  than f2 percent.  

The da ta  fo r  t h e  B a t t e l l e  curve (curve 1) were 

Ba t t e l l e  mea- 

The values fo r  t he  MSAR curve (curve 2 )  were calculated from an equation 
given i n  reference 8 as a least-squares  f i t  of the experimental data.  The 
standard deviat ion of t he  52 points  w a s  0.102 micro-ohm-inch (0.259 @-em) or 
1.0 percent. 
(curve 3) were calculated from an equation i n  reference 9 given as a l e a s t -  

The values fo r  t he  Pratt  and Whitney Aircraf t  (PWAC) curve 
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squares fit of t he  experimental data.  The e l e c t r i c a l  r e s i s t i v i t y  was measured 
by passing a known current  through a ca l ibra ted  s t a i n l e s s - s t e e l  tube containing 
the  l i q u i d  potassium a t  a uniform temperature and measuring the  po ten t i a l  drop 
across a well-defined length  of t he  tube. The mean deviat ion of t he  1 5  experi-  
mental po in ts  was k0.71 percent,  with a maximum deviat ion of 2 . 3  percent a t  
494' F (256.4O C )  . 

It can be seen t h a t  all the  experimental data  agree very closely over the 
e n t i r e  temperature range, with a maximum d i f fe rence  of only about 3 percent.  

Thermal Conductivity (Fig. 5) 

The experimental thermal conductivity data  of Ewing, e t  a l .  ( r e f .  50), ob- 
ta ined  from a longi tudina l  heat-flow apparatus, is  shown i n  f igure  5 as  curve 1. 
These data  were a l s o  reported i n  reference 31. 
data  by AiResearch Company w a s  reported i n  reference 1 and i s  shown as curve 2.  

An extrapolat ion of Ewing's 

Novikov, e t  a l .  (ref. 39) concluded that the  d i r e c t  measurement of the  
thermal conductivity of the  l i q u i d  a l k a l i  m e t a l s  was  not su i t ab le  and, there-  
fore ,  chose t o  measure the  thermal d i f f u s i v i t y  and t o  ca lcu la te  t he  thermal 
conductivity as  t h e  product of the  thermal d i f fus iv i ty ,  the  spec i f i c  heat, and 
the  density.  The spec i f i c  heat values were taken from Douglas, e t  al .  ( r e f .  51) 
and the  densi ty  from reference 31. The deviat ion of t he  readings from the  mean 
was reported not t o  exceed 0.5 percent.  The values f o r  curve 3 were read from 
a smooth curve i n  reference 39. 

Nikol 'ski i  ( r e f .  10) developed a method of measuring thermal conductivity 
ca l led  the  method of successive s t a t iona ry  states. The results of experiments 
using t h i s  method a re  shown as curve 4. 
from t ab le  1 2  of reference 10; these values were obtained from the  smoothed 
curve through the  experimental data.  Although no values were given fo r  data 
s c a t t e r ,  most of t he  data  points  appeared t o  be within about k2 Btu per hour 
per foot  per OF of t h e  smoothed curve. 

The values f o r  t h i s  curve were taken 

Battelle (ref. 7) measured the  thermal conductivity up t o  1472O F (800' C ) ,  
using a longitudinal-heat-flow, s teady-state ,  comparative method, with an e s t i -  
mated experimental e r ro r  of 8 percent.  Two equations were derived for  the  data  
by the method of l e a s t  squares. The first, a s t r a i g h t  l i n e  equation ( tha t  was 
v a l i d  only from 100' t o  800' C )  had a standard deviat ion of 0.8 Btu per hour 
per  foot  per OF (0.014 W/(cm)(OC)) for  the  50 data  points ,  while the  second, a 
second-degree equation ( t h a t  could be extrapolated) had a standard deviation 
of 0.6 Btu per hour per  foot  per OF (0.011 W/(cm)(oC)). 
t h i s  second equation (extrapolated t o  2100' F) were reported i n  t ab le  A-6 of 
reference 7 and a r e  shown as  curve 5. 

Values calculated from 

The Wiedemann-Franz-Lorenz equation s t a t e s  t h a t  the  product of the  thermal 
conductivity and the  e l e c t r i c a l  r e s i s t i v i t y  divided by the absolute temperature 
i s  equal t o  a constant ca l led  the  Lorenz number. 
Lorenz number derived from the  Ba t t e l l e  experimental data  w a s  2 .14X10'8 watt- 
ohm per degree squared. 

The average value of t he  

It should be noted t h a t  t h e  average value of the 
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Lorenz number obtained using the thermal conductivity data  of Ewing, e t  a l .  
(ref. 50) and the  e l e c t r i c a l  r e s i s t i v i t y  data  of reference 9 w a s  a l s o  2.14X10e8 
watt-ohm per degree squared. Values of thermal conductivity calculated by 
B a t t e l l e  up t o  2100° F with t h i s  average value of t h e  Lorenz number were a l s o  
reported i n  t a b l e  A-6 of reference 7 and showed very good agreement with 
curve 5. 

MSAR ( r e f .  8) reported values of thermal conductivity calculated d i r e c t l y  
from MSAR experimental e l e c t r i c a l  r e s i s t i v i t y  data, using t h e  Wiedemann-Franz- 
Lorenz equation with the  theore t ica l  value of the Lorenz number of 2.45X10e8 
watt-ohm per degree squared. Since t h i s  t h e o r e t i c a l  value is  about 1 4  percent 
higher than t h e  B a t t e l l e  experimental Lorenz number and t h e  e l e c t r i c a l  r e s i s -  
t i v i t y  values of these two sources d i f f e r  only s l i g h t l y ,  it can be seen t h a t  
the  MSAR thermal conductivity values reported a r e  a l s o  about 1 4  percent higher 
than B a t t e l l e ' s  over the e n t i r e  temperature range. 

The data  of B a t t e l l e  (curve 5) a r e  approximately i n  t h e  middle of the  val-  
ues presented. 
t o  7 percent a t  llOOo F higher than curve 5. 
(curve 1) a r e  about 6 percent lower than B a t t e l l e ' s  a t  400° F and cross curve 5 
a t  about 1000° F. The data  of Nikol 'ski i  (curve 4) diverge a t  both the higher 
and lower temperatures, d i f fe r ing  from t h a t  of B a t t e l l e  by about 1 4  percent a t  
ZOOo F and 12 percent a t  1300' F. 

Novikov's values (curve 3) a r e  from about 9 percent a t  400' F 
The data  of Ewing, e t  a l .  

Enthalpy (Fig. 6)  

Douglas, e t  a l .  (ref. 51) determined the enthalpy of potassium l i q u i d  up 
t o  1472O F (800' C )  using an i c e  calorimeter.  
given by the equation presented were believed t o  be l e s s  than 0.3 percent f o r  
temperatures above 400° F (200' C )  . Several values calculated with t h i s  en- 
thalpy equation and a constant from the  work of Evans, e t  a l .  ( r e f .  52) ( i n  
order t o  r e f e r  the enthalpy t o  O o R )  a re  shown i n  f igure  6 f o r  comparison. 

Errors i n  the  enthalpy values as 

The l i q u i d  enthalpy i n  reference 33 w a s  determined by integrat ing the l i q -  
uid spec i f ic  heat re la t ion ,  as given i n  reference 31, and adding the enthalpy 
of the s o l i d  and the  enthalpy of melting as determined from reference 53. It 
should be noted t h a t  the  spec i f ic  heat r e l a t i o n  reported i n  reference 31 w a s  
ac tua l ly  from the  data  of Douglas, e t  a l .  ( r e f .  51). The values of enthalpy 
calculated i n  reference 33 (extrapolated t o  2100' F) were reported i n  re fer -  
ence 1 and are shown as curve 1 i n  f igure  6.  

B a t t e l l e  ( r e f .  1 2 )  measured the l i q u i d  enthalpy up t o  2100' F (1150' C )  
It w a s  apparent t h a t  g rea te r  confidence ex- using a Bunsen Ice Calorimeter. 

i s t e d  for  the data up t o  about 1470' F (800' C >  than f o r  t h e  data a t  the  higher 
temperatures, s ince the data s c a t t e r  w a s  more pronounced a t  temperatures above 
1470° F (8000 C ) .  The data  s c a t t e r  a t  the  higher temperatures w a s  due, i n  par t ,  
t o  the e f f e c t  of oxidation of the  capsule. 
uniform, but a l s o  w a s  not  the  same f o r  both the  empty and the  specimen capsules. 
In the  least-squares solution, therefore,  B a t t e l l e  gave the  data below 1470° F 
a weighting of three,  compared t o  a weighting of one f o r  the  higher temperature 

This oxidation not on ly  w a s  not 
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data .  The standard deviation from the  r e s u l t i n g  equation was  3.04 B t u  per pound 
(1.69 Cal/g) f o r  t h e  23 values from the  melting point  t o  2100' F. 
deviation w a s  1 . 2 0  Btu per pound (0.67 Cal/g) f o r  the  13 values below 1470' F 
and 4.55 Btu per pound (2.53 Cal/g) f o r  the  10 values above 1470' F. 
ing the  u n i t s  o f t h e  previous equation and adding a constant from the work of 
Evans, e t  a l .  ( r e f .  52), Battel le  obtained an equation (presented i n  r e f .  2) for  
l i q u i d  enthalpy referenced t o  Oo R (0' K ) .  Values calculated from t h i s  equa- 
t i o n  were presented i n  t a b l e  C-2 of reference 2 and are  shown as curve 2. 

The standard 

By chang- 

Bat te l le  a l s o  determined a least-squares f i t  of only the  data  from the  
melting point  t o  1470' F; t h e  standard deviation of the 13 points from t h i s  
equation (presented i n  t a b l e  6 of r e f .  12)  w a s  0.77 B t u  per pound (0.43 Cal/g). 
Several values calculated by means of t h i s  enthalpy equation and a constant 
from the  work of Evans, e t  a l .  ( r e f .  52) ( i n  order t o  r e f e r  the enthalpy t o  
0' R) a r e  shown i n  f igure  6. 

The data  f o r  one NRL curve (curve 3) were taken from t a b l e  5 of r e f e r -  
ence 3; these enthalpy values were calculated from an equation derived by NRL 
d i r e c t l y  from the  work of Douglas, e t  a l .  (ref. 51), with a constant from the 
work of Evans, e t  al. ( r e f .  52), and extrapolated by NRL t o  2500' F. 
nary s p e c i f i c  heat r e s u l t s  a t  NRL ( r e f .  13) i n  t h e  temperature range from 1300' 
t o  2100' F show an average deviation of k1.4 percent from values calculated from 
the  equation of reference 51 and tend t o  j u s t i f y  the enthalpy extrapolation. 

Prelimi- 

The data f o r  t h e  other NRL curve (curve 4) were taken from t a b l e  11 of r e f -  
erence 11; NRL obtailled these enthalpy values by subtract ing the  enthalpy of va- 
porizat ion from t h e  enthalpy of the saturated vapor, using the  values presented 
i n  t a b l e  11 ( r e f .  11). The enthalpy of t h e  saturated vapor presented i n  re fer -  
ence 11 w a s  computed with v i r i a l  coeff ic ients ,  by using the propert ies  of the  
monomeric gas a t  one atmosphere as given by Evans, e t  a l .  ( r e f .  52)  as a base, 
or s t a r t i n g  point .  
shown as curve 5. 

The NRL f i n a l  values from appendix A of reference 27 a r e  

It can be seen from f igure  6 t h a t  the  values calculated from the Bat te l le  
(ref. 12)  equation, which considered only the data  a t  temperatures l e s s  than 
1470' F (80O0 C ) ,  agree very well with the values calculated from Douglas, 
e t  a l .  ( r e f .  51). 
(both based on the  data  of r e f .  51) agree very well  with each other. 
curve (curve 4) i s  from 3 t o  4 percent higher, while the  f i n a l  NRL curve 
(curve 5) i s  2 t o  3 percent higher than curve 1 over the  range shown. 
Bat te l le  data (curve 2) agree very closely with curve 1 a t  the lower tempera- 
tu res  and l i e  between the values given by NRL a t  t h e  higher temperatures, d i f -  
fer ing from curve 3 by 3 percent a t  20000 F. While t h i s  difference i s  small, 
the  difference i n  the slope of curve 2 a f f e c t s  the  change i n  enthalpy with tem- 
perature (therefore,  the  spec i f ic  heat)  t o  a grea te r  degree. 

The extrapolated curves of NRL (curve 3) and WADD (curve 1) 
The NRL 

The 

Specif ic  Heat (Fig. 7)  

Douglas, e t  al. (ref. 51) , derived the  s p e c i f i c  heat r e l a t i o n  from a cor- 
rected first der ivat ive of the  equation representing t h e i r  experimental l i q u i d  
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enthalpy data.  
from the  derived equation w a s  0.4 percent for  the  range from 200' t o  1300° F 
(100' t o  700' C ) .  The values from re?erence 51 were a l s o  reported i n  re fer -  
ence 31 and a r e  shown as curve 1 i n  f igure  7 .  The data  reported i n  reference 31 
were extrapolated t o  2200' F i n  reference 33; these values were a l s o  reported by 
WADD ( re f .  1) and a r e  shown as curve 2 .  

The uncertainty assigned t o  the  heat capacity values calculated 

Values of s p e c i f i c  heat determined by Nikol 'ski i  ( r e f .  10) using t h e  d i r e c t  
heating method a r e  i d e n t i c a l  t o  the  values of reference 51 f o r  the range of 
200' t o  750° F (looo t o  400' C). 

B a t t e l l e  ( r e f .  1 2 )  determined the  s p e c i f i c  heat from a corrected f i rs t  de- 
r i v a t i v e  of the equation derived by a least-squares f i t  of the  experimental l i q -  
uid enthalpy data. A s  noted i n  the  discussion of l i q u i d  enthalpy, B a t t e l l e  pre- 
sented two equations t o  represent t h e  experimental enthalpy data, because of the  
increased data s c a t t e r  a t  temperatures above 1470O F (800° C); therefore,  two 
equations were a l s o  derived f o r  the  s p e c i f i c  heat.  
the  e n t i r e  temperature range (melting point  t o  2100' F) were considered i n  the 
least-squares f i t ,  the  spec i f ic  heat r e s u l t s  ( tabulated i n  t a b l e  4 of r e f .  1 2 )  
w e r e  as shown i n  curve 3. However, when o n l y  the  enthalpy data over the temper- 
a t u r e  range of the  melting point  t o  1472' F (800' C) were used f o r  the  l e a s t -  
squares f i t ,  the  r e s u l t s  ( tabulated i n  t a b l e  6 of r e f .  1 2 )  were as shown i n  
curve 4. Preliminary values of spec i f ic  heat reported by NRT; i n  reference 13 
a r e  a l s o  shown f o r  comparison. 

When the  enthalpy data over 

It can be seen t h a t  the B a t t e l l e  s p e c i f i c  heat values (curve 4) t h a t  were 
based on the more r e l i a b l e  of t h e i r  enthalpy data agree very well with the work 
of Douglas, e t  a l .  (curve 1). It can a l s o  be seen t h a t  t h e  preliminary values 
reported by NRL tend t o  j u s t i f y  the extrapolated values of curve 2.  The other 
B a t t e l l e  curve (curve 3) shows good agreement a t  t h e  lower temperatures but 
d i f f e r s  s ign i f icant ly  a t  the higher temperatures; t h i s  difference a t  2000° F 
i s  13 percent. 

Entropy (Fig. 8 )  

Douglas, e t  a l .  ( r e f .  51) derived an equation f o r  l i q u i d  entropy from t h e i r  
spec i f ic  heat r e l a t i o n .  Several values calculated with t h i s  entropy equation 
and a constant from the work of Evans, e t  a l .  ( r e f .  52 )  ( i n  order t o  r e f e r  the 
entropy t o  0' F) a r e  shown i n  f igure 8 f o r  comparison. 

GE ( r e f .  33) determined the entropy of the l i q u i d  using the GE extrapolated 
spec i f ic  heat re la t ion ,  which w a s  ac tua l ly  based on reference 51, and a constant 
from reference 53. The GE values were a l s o  reported by WADD ( re f .  1) and are 
shown i n  f igure  8 as curve 1. 

The entropy values presented by B a t t e l l e  i n  t a b l e  C-2 of reference 2 
were calculated by means of t h e  B a t t e l l e  f u l l  temperature range l i q u i d  heat 
capacity r e l a t i o n  ( r e f .  1 2 )  and a constant from the  work of Evans, e t  a l .  
(ref. 52). These values a r e  presented i n  f igure  8 as curve 2. 

The values f o r  curve 3 were taken from t a b l e  5 of reference 3; these values 
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were calculated by means of an equation derived by NRL from the work of Douglas, 
e t  al .  ( r e f .  51) using a constant from the  work of Evans, e t  al. (ref. 52)  and 
extrapolated by NRL t o  2500' F. 
(ref.  13) i n  the  temperature range from 1300° t o  2100' F show an average devi- 
a t i o n  of k1.4 percent from the  values calculated from t h e  equation of r e f e r -  
ence 51 and tend t o  j u s t i f y  the  entropy extrapolation. 

Preliminary s p e c i f i c  heat r e s u l t s  a t  NRL 

The values f o r  curve 4 were obtained by NRL by subtract ing the  entropy of 
vaporization from the  entropy of the sa tura ted  vapor as presented i n  t a b l e  11 
of reference 11. The entropy of saturated vapor as presented i n  reference 11 
w a s  computed with v i r i a l  coeff ic ients ,  using the  propert ies  of the monomeric 
gas a t  one atmosphere as given by Evans, e t  al. (ref.  5 2 ) ,  as a base, o r  s tar t -  
i.ng point .  
curve 5. 

The NRZ; f i n a l  values from appendix A of reference 27 are shown as 

It can be seen t h a t  the  extrapolated curves of WADD (curve 1) and NRL 
(curve 3) (both based on r e f .  51) agree very well  with each other. The NRL 
curve (curve 4)  i s  about 1 percent higher than curve 3, and curve 5 is  within 
0.5 percent of curve 4. 
values calculated from Douglas, e t  a l .  (ref. 51) a t  the  lower temperatures and 
l i e s  between t h e  two values given by NRL a t  t h e  higher temperatures, d i f fe r ing  
from curve 3 by only 1 percent a t  2000° F. 

The B a t t e l l e  curve (curve 2 )  agrees very well  with the 

SATURATED VAPOR PROPERTIES 

Vapor Pressure (Fig. 9) 

I n  1941, Ditchburn and Gilmour ( r e f .  54) correlated the  vapor pressure data  
of several  invest igators  ( r e f s .  55 t o  61) and derived an equation with an e s t i -  
mated accuracy of 5 percent for  the range from 620' t o  1520' F or 20 percent f o r  
the  range from 170' t o  1700' F. 
equation were a l s o  reported i n  reference 31, and several  of these values a r e  
shown i n  f igure  9 for  comparison. 

Values of vapor pressure calculated from t h i s  

The values given by the equation of reference 54 (as presented i n  r e f .  31) 
were modified by GE ( r e f .  33) i n  order t o  y i e l d  consis tent  r e s u l t s  i n  the ca l -  
culat ion of thermodynamic propert ies .  The r e s u l t s  of t h i s  modification were 
a l s o  reported by WADD (ref.  1) and a r e  shown i n  f igure  9 as curve 1. 

Makansi, e t  a l . ,  ( r e f .  62) measured the  vapor pressure i n  t h e  range from 
0.162 t o  6.529 atmospheres absolute (2.4 t o  96 p s i a ) .  
with a least-squares equation with a reported standard e r ror  of 1.1 percent of 
the  value of the  pressure. Values calculated from t h i s  equation a r e  shown as 
curve 2 .  

The data were f i t t e d  

B a t t e l l e  ( r e f .  14) measured the vapor pressure by determining the temper- 
a ture  a t  which the pressure of the potassium vapor became equal t o  a fixed he- 
l i u m  pressure. This temperature w a s  obtained by observing the slope of the 
time-temperature curve as the  specimen capsule w a s  heated a t  a s e t  r a t e .  With 
t h e  stainless-steel capsule used a t  t h e  lower temperatures, the slope of t h i s  
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curve changed abruptly as the  boi l ing point  w a s  reached; however, with the  
niobium-1 zirconium capsule used a t  higher temperatures, no abrupt change w a s  
noted. Instead, the change of slope w a s  very gradual near the  boi l ing point .  
Therefore, the  nearly constant slope regions of preboi l ing and postboiling were 
extrapolated t o  t h e i r  in te rsec t ion  t o  determine the  boi l ing point .  An equation 
t o  represent t h e  experimental data  w a s  derived, based on t h e  r e l a t i o n  of Thorn 
and Winslow ( r e f .  63) .  
k0.0097 i n  the  logarithm of the  pressure i n  atmospheres. This standard devia- 
t i o n  corresponds t o  an uncertainty i n  the vapor pressure of 2.26 percent. V a l -  
ues calculated from the  B a t t e l l e  equation were tabulated i n  tab le  C - 1  of r e f e r -  
ence 2 and a r e  shown i n  f igure 9 as curve 3. 

The standard deviation f o r  the B a t t e l l e  equation w a s  

The values f o r  the  NRL curve (curve 4) w e r e  taken from t a b l e  5 of r e f e r -  
ence 3; these values were calculated from an equation obtained by a l e a s t -  
squares treatment of the NRL experimental vapor pressure data, measured during 
the  pressure-volume-temperature (PVT) experiments. The average deviation of the 
observed values from t h e  corresponding calculated values w a s  20.31 percent. The 
NRL f i n a l  values from appendix A i n  reference 27 a r e  t h e  same as curve 4.  

It w a s  noted i n  reference 14 t h a t  the  data  of Grachev and Kir i l lov  ( r e f .  64) 
deviated widely a t  a l l  temperatures and must be i n  e r ror .  

It can be seen i n  f igure  9 t h a t  the B a t t e l l e  curve (curve 3) shows good 
agreement with the correlated values of Ditchburn and Gilmour ( r e f .  54) i n  t h e  
lower temperature range and with the NRL experimental values (curve 4) a t  the 
higher temperatures. The maximum difference with NRL i s  about 5 percent a t  
1400' F. 
higher than B a t t e l l e ' s  a t  the lower temperatures and up t o  3 percent lower a t  the  
higher temperatures, crossing a t  about 1650' F. The values of Makansi, e t  a l .  
(curve 2 )  a r e  higher than those of B a t t e l l e  and NRL over the  range shown and 
d i f f e r  from B a t t e l l e ' s  by 10 t o  15 percent a t  the lower %emperatures. 

The modified values reported by WADD (curve 1) a r e  from 6 t o  8 percent 

Density (Fig. 10) 

The specif ic .  volumes of the saturated vapor presented by GE ( r e f .  33) were 
theore t ica l  values calculated from the per fec t  gas l a w .  Values taken from ta- 
b l e  2 of reference 33 a r e  shown as curve l i n  f igure  10. Values of vapor den- 
s i t y  reported by WADD ( r e f .  1) were based on reference 33. 

Values f o r  t h e  B a t t e l l e  curve (curve 2 )  were taken from t a b l e  C-1 of r e f -  
erence 2; these values were calculated using v i r i a l  coef f ic ien ts .  
noted t h a t  the values of the second v i r i a l  coef f ic ien t  obtained by B a t t e l l e  
from the PVT experiments were s l i g h t l y  d i f f e r e n t  from the values of Thorn and 
Winslow ( r e f .  63).  Since problems with the PVT apparatus were encountered by 
Bat te l le ,  due i n  p a r t  t o  the complexity of the pressure measuring system, it 
w a s  concluded by B a t t e l l e  t h a t  the  more r e l i a b l e  second v i r i a l  coeff ic ients  
could be obtained from an equation taken from the work of Thorn and Winslow 
( r e f .  63) and presented i n  reference 2 .  The t h i r d  v i r i a l  coeff ic ient ,  deter-  
mined or ig ina l ly  from the vapor pressure work ( r e f .  14), w a s  modified from the  
PVT data as shown i n  appendix B of reference 2 .  This modified coef f ic ien t  w a s  

It should be 
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used i n  the  ca lcu la t ion  of t h e  vapor s p e c i f i c  volwne. 

The data for  t h e  NRL curve (curve 3) were taken from t a b l e  5 of r e f e r -  
ence 3; these data  w e r e  computed from the  v i r i a l  equation of s t a t e .  
coef f ic ien ts  were derived graphically from t h e  PVT data  of reference 3. 
c i f i c  volumes a t  sa tura t ion  f o r  nine temperatures from 1570' to 2289' F were 
a l s o  d i r e c t l y  observed by NRL and were presented i n  t a b l e  4 of reference 3. 
The observed values deviated from computed values by an average of st0.33 per-  
cent.  The NRL f i n a l  values from appendix A of reference 27 l i e  on curve 3. 

The v i r i a l  
Spe- 

"he B a t t e l l e  curve (curve 2 )  agrees very w e l l  with the theore t ica l  values 
of curve 1 a t  the  lower temperatures, and both t h e  B a t t e l l e  and NRL curves de- 
v i a t e  from the t h e o r e t i c a l  values a t  the higher temperatures. A t  2000' F, the  
B a t t e l l e  value of vapor density i s  1 6  percent higher than the  NRL value, and 
the NRL value is  10 percent higher than the t h e o r e t i c a l  value. 

Viscosity (Fig. 11) 

The values presented by WADD ( r e f .  1) a r e  t h e o r e t i c a l  and were computed 
f o r  var iable  molecular weight saturated vapor by means of an equation f o r  gas 
v iscos i ty  presented i n  reference 65. 

It should be noted t h a t  B a t t e l l e  ( r e f .  15) attempted t o  determine t h i s  prop- 
e r ty ,  but experimental d i f f i c u l t i e s  prevented completion of the program. 

Thermal Conductivity (Fig. 1 2 )  

The values presented by WADD ( r e f .  1) were estimated by assuming a con- 
s t a n t  Prandtl  number of 0.73. 
and absolute v iscos i ty  ( f i g .  11) were then used t o  compute the thermal conduc- 
t i v i t y  of the saturated vapor. These WADD values a r e  shown i n  f igure  1 2 .  
B a t t e l l e  ( r e f .  15) attempted t o  determine t h i s  property, but experimental d i f -  
f i c u l t i e s  prevented completion of the program. 

Values of frozen s p e c i f i c  heat (curve 1, f i g .  15) 

It can be seen t h a t  the  value o f  the  thermal conductivity calculated i n  
t h i s  manner i s  d i r e c t l y  affected by the values used f o r  spec i f ic  heat and v i s -  
cos i ty  as well as the  value assumed for  the Prandt l  number. 

Heat of Vaporization (Fig. 13) 

GE calculated t h e  theore t ica l  values f o r  the  enthalpy of the saturated va- 
por using constants from reference 53. Values of the  heat of vaporization ob- 
ta ined by subtract ing the enthalpy of the saturated l i q u i d  from the enthalpy of 
the  saturated vapor a t  the  same temperature as given i n  tab le  2 of reference 33 
were a l s o  reported by WADD ( r e f .  1) and a r e  shown as curve 1 i n  f igure 13. 

Bat te l le  calculated the  heat of vaporization using the  Bat te l le  experimen- 
t a l l y  determined vapor pressure equation ( r e f .  14 )  and the  Clapeyron equation 

22 



a 
V 

.- i5 
VI 0 

2 .- > 

.022 

. 016L 

Temperature, OF 

I I I .A I I 
1000 1100 1200 900 700 800 

I 
600 

I 
500 

Temperature, OC 

Figure 11. - Viscosity of potassium vapor (saturated). (Data taken from ref. 1.) 

23 

I 



s c .- > 
V 
3 
-0 c 
0 V 

.- 
c 

13 
V 

Temperature, OF 

1 I I I 
900 lo00 1100 1200 

I 
800 500 600 700 

Figure 12. - Thermal conductivity of potassium vapor (saturated). (Data taken from 

I- I 
Temperature, OC 

ref. 1.) 

24 



480 
c m 
c- 
0 

L 
0 

m > 
N 
L 
0 

n .- 
n 

0 m 
I 

I 

c 

c 
m al 

Temperature, "F 

I 1 I I u 
900 io00 iioo 1x1  700 800 

Temperature, OC 

I 
600 

I 
500 

I 
400 

I 
300 

I 
200 

Figure 13. - Heat of vaporization of potassium. 

25 



with the  nonideal gas theory and v i r i a l  coe f f i c i en t s .  These coef f ic ien ts  were 
discussed i n  the  vapor densi ty  sec t ion  of t he  present  report ,  and both r e l a t ions  
derived fo r  t he  t h i r d  v i r i a l  coef f ic ien t  were used t o  ca lcu la te  values of t h e  
hea t  of vaporization. Ba t t e l l e  used the  o r ig ina l  r e l a t i o n  fo r  t he  t h i r d  v i r i a l  
coef f ic ien t  (as obtained from the  vapor pressure work, r e f .  14) t o  ca lcu la te  
t he  values presented i n  t a b l e  2 of reference 14, shown i n  f igure  13 as curve 2 .  
Ba t t e l l e  then used the  f i n a l  or modified r e l a t i o n  fo r  t h e  coef f ic ien t  t o  calcu- 
l a t e  the  values presented i n  t ab le  5 of reference 15, shown i n  f igure  13 as 
curve 3. 

The data  fo r  t h e  NRL curve (curve 4) were taken from t a b l e  5 of r e f e r -  
ence 3; these data  were calculated by using the  NRL vapor pressure equation 
( r e f .  3) with t h e  Clapeyron equation. 
t h a t  calculat ion were computed from an equation presented as a representat ion 
of NRL experimental data .  

The values of spec i f i c  volume used i n  

The values fo r  t h e  rJRL curve (curve 5) were taken from t ab le  11 of r e f e r -  
ence 11; these values a l s o  w e r e  calculated using the  NRL vapor pressure equa- 
t i o n  with t h e  Clapeyron equation. 
d i f f e r  very s l igh t ly ;  apparently the  values of sa tura ted  vapor spec i f i c  volume 
used i n  the  ca lcu la t ion  i n  reference 11 were computed from t he  v i r i a l  equation 
of s t a t e .  
curve 6 .  

However, t he  two NRL curves (curves 3 and 4)  

The NRL f i n a l  values from appendix A of reference 27 a r e  shown as  

The l a t e n t  heat of vaporization i s  being determined by d i r ec t  measurement 
( r e f .  16), and very preliminary r e s u l t s  ind ica te  values approximately 5 percent 
lower than curve 1 over the  range of measurement (up t o  1700' F i n  r e f .  1 6 ) .  

It can be seen t h a t  t h e  values given by both NRL and Ba t t e l l e  deviate s ig -  
n i f i can t ly  from t h e  t h e o r e t i c a l  values of WADD (curve 1) a t  the  higher temper- 
a tures .  
lower a t  about 11 percent f o r  curve 2 and 1 4  percent fo r  curve 3. Curve 6 i s  
within 1 percent of curve 4.  

A t  2000° F, NRL is  about 6 percent lower than WADD and Ba t t e l l e  i s  even 

Entropy of Vaporization (Fig. 14 )  

Theoretical  values of t he  entropy of sa tura ted  vapor were calculated by 
GE with constants from reference 53. These entropy values were a l so  reported 
by WADD ( r e f .  1). Data f o r  t h e  entropy of vaporization, obtained by subt rac t -  
ing the  entropy of  t h e  s a t u r a t e d l i q u f d  from t h e  entropy of the  saturated vapor 
a t  t h e  same temperature using values presented i n  t a b l e  2 of reference 33, a r e  
shown as  curve 1 i n  f igu re  14 .  

B a t t e l l e  calculated t h i s  property by dividing the  enthalpy of vaporization 
(as  given by curve 3, f i g .  13) by the  absolute temperature. 
Ba t t e l l e  curve (curve 2 )  were obtained by subtract ing the  entropy of the s a t -  
urated l i q u i d  from the  entropy of the sa tura ted  vapor as presented i n  tab les  C - 2  
and C-1, respect ively,  of reference 2 .  

Values for  t he  

NRL a l s o  ca lcu la ted  t h i s  property by dividing t h e  enthalpy of vaporization 
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by the  sa tura t ion  temperature. The data f o r  the  NRL curves (curves 3 and 4) 
were taken from t a b l e  5 of reference 3 and t a b l e  11 of reference 11, respec- 
t ive ly ,  and d i f f e r  very l i t t l e  from t h e  NRL f i n a l  values from appendix A of ref- 
erence 27 shown as curve 5. 

It can be  seen t h a t  both the  NRL and B a t t e l l e  values deviate s i g n i f i c a n t l y  
from the t h e o r e t i c a l  values of WADD (curve 1) a t  t h e  higher- temperatures. 
2000' F, the NRL values a r e  6 percent lower than those of WADD, and the  B a t t e l l e  
values a r e  14  percent lower than those of WADD. 

A t  

Specif ic  Heat (Fig. 15) 

Two t h e o r e t i c a l  curves f o r  s p e c i f i c  heat of saturated vapor were calculated 
by GE ( r e f .  3 3 ) ,  using constants from reference 53. 
were a l s o  reported by WADD ( r e f .  1) and a r e  shown i n  f igure  15 as curves 1 
and 2 .  In curve 1, the  frozen spec i f ic  heat w a s  calculated as a s t a t e  point 
property by adding the  separate contributions of the  monotomic and diatomic va- 
pors f o r  a given equilibrium composition. In  curve 2,  the  equilibrium spec i f ic  
heat w a s  calculated according t o  the rigorous def in i t ion  of spec i f ic  heat and 
includes the energy required t o  a l t e r  the  degree of equilibrium as a r e s u l t  of 
dissociat ion.  

These theore t ica l  values 

The data  f o r  t h e  B a t t e l l e  c u v e  (curve 3 )  were taken from t a b l e  C - 1  of r e f -  
erence 2; these data were calculated using t h e  heat capacity of the i d e a l  mon- 
omer, as given by Evans, e t  a l .  ( r e f .  5 2 ) ,  and v i r i a l  coef f ic ien ts .  These co- 
e f f i c i e n t s  were discussed i n  the vapor densi ty  sect ion of the  present report ,  
and the  f i n a l  or modified r e l a t i o n  for  t h e  t h i r d  v i r i a l  coef f ic ien t  ( r e f .  2 )  
w a s  used t o  ca lcu la te  the  s p e c i f i c  heat. 

The values f o r  t h e  NRL curve (curve 4)  were taken from tabulated data i n  
appendix C of reference 3; T\TRL obtained these values by numerical evaluation of 
the change of vapor enthalpy with respect t o  temperature. The enthalpy of the 
vapor w a s  determined by adding t h e  heat of vaporization t o  the  enthalpy of the  
l iqu id ,  as given i n  reference 3 .  

The data  f o r  t h e  NRL curve (curve 5) were taken from t a b l e  1 2  of r e f e r -  
ence 11; these data were calculated using t h e  s p e c i f i c  heat of the  monomeric 
gas a t  one atmosphere as derived d i r e c t l y  from the work of Evans, e t  a l .  
( r e f .  52 )  , and the NRL experimental v i r i a l  coef f ic ien ts .  These coef f ic ien ts  
were a l s o  discussed i n  the  vapor density sect ion of t h e  present report .  The 
rJRL f i n a l  values from appendix B of reference 27 a r e  shown as curve 6 .  

The values f o r  the spec i f ic  heat of the  saturated vapor from the  several  
sources d i f f e r  widely. 
a re  around 40 percent lower than  the  theore t ica l  values of equilibrium spec i f ic  
heat (curve 2 ) .  
other curves a r e  concave downward. A t  2000° F, the B a t t e l l e  value is about 
156 percent higher than the  t h e o r e t i c a l  value reported by WADD (curve 2 ) .  The 
two preliminary NRL curves (curves 4 and 5) ,  determined by two d i f f e r e n t  meth- 
ods, agree rather  well with each other, d i f fe r ing  by 6 percent a t  1400' F 

"he theore t ica l  values of frozen spec i f ic  heat (curve 1) 

The B a t t e l l e  curve (curve 3 )  i s  concave upward, while the 
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and 2.5 percent a t  2000° F. The NRL f i n a l  curve (curve 6)  i s  about 6 t o  16  per- 
cent higher than curve 5 over the range shown and a t  20000 F i s  about 4 1  percent 
higher than the t h e o r e t i c a l  value of curve 2 .  

Enthalpy and Entropy (Fig. 16 )  

The sa tura t ion  l i n e s  on an enthalpy-entropy diagram a r e  shown f o r  several  
sources i n  f igure  16. The s o l i d  l i n e s  on the  f igure  merely connect points of 
equal temperature on the  curves. Theoretical  values for  the  enthalpy and en- 
tropy of the  saturated vapor were calculated by GE (ref.  33) with constants 
from reference 53. These values were a l s o  reported by WADD ( r e f .  1) and are 
shown as curve 1. 

The data  f o r  t h e  B a t t e l l e  curve (curve 2 )  were taken from t a b l e  C - 1  of r e f -  
erence 2; B a t t e l l e  calculated these data  by adding t h e  absolute values of en- 
thalpy and entropy of sa tura ted  l i q u i d  t o  the  values f o r  the  enthalpy and en- 
tropy of vaporization. 

The data  f o r  t h e  NRL curve (curve 3) were taken from t a b l e  5 of r e f e r -  
ence 3; NRL calculated these data  by adding the  change i n  enthalpy and entropy 
with vaporization t o  the  values for  the saturated l iqu id .  

The values f o r  the  NRL curve (curve 4) were taken from t a b l e  11 of r e f e r -  
ence 11; NRL calculated these values with v i r i a l  coef f ic ien ts  using the s t a t e  
of t h e  monomeric gas a t  one atmosphere as derived d i r e c t l y  from the  work of 
Evans, e t  a l .  ( r e f .  52 )  as a base, or s t a r t i n g  point.  These coef f ic ien ts  were 
discussed i n  the vapor densi ty  sec t ion  of t h e  present report .  The NRL f i n a l  
values from appendix A of reference 27 a r e  shown as curve 5. 

It can be seen t h a t  the B a t t e l l e  values (curve 2 )  agree very closely with 
t h e  theore t ica l  values reported by WADD (curve 1) a t  the lower temperatures but 
deviate a t  the  higher temperatures. A t  2600' R,  t h e  B a t t e l l e  values are 11 per-  
cent lower for  enthalpy and 5 percent lower f o r  entropy than the  WADD curve. It 
can a l s o  be seen t h a t  t h e  shape of t h e  B a t t e l l e  curve deviates s ign i f icant ly  
from the other curves shown. 

The two preliminary NRL curves (curves 3 and 4) agree r a t h e r  well with 
each other, d i f fe r ing  by only 2 percent i n  enthalpy and 1 percent i n  entropy 
a t  2600° R, and both curves a r e  s l i g h t l y  lower than the  t h e o r e t i c a l  values of 
curve 1. The NRL f i n a l  curve (curve 5) i s  within 1 percent of curve 4. 

CONCLUDING REMARKS 

The r e s u l t s  of t h e  recent  invest igat ions have extended the temperature 
range of t h e  previously ex is t ing  potassium property data. The values from the  
several  sources f o r  most of these propert ies  agree very w e l l  a t  the  lower tem- 
peratures .  However, s i g n i f i c a n t  differences a r e  apparent f o r  some of the  prop- 
e r t i e s  a t  the  higher temperatures (above about 1400° F) . 
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The l a r g e s t  disagreements i n  the  l i q u i d  propert ies  were i n  the  values of 
surface tension, thermal conductivity, and s p e c i f i c  heat.  For surface tension, 
t h e  difference between the two sources a t  900' F was  about 60 percent. The d i f -  
ference between t h e  highest  and lowest values of thermal conductivity a t  1300° F 
w a s  about 20 percent, and the spec i f ic  heat values d i f fe red  by about 13 percent 
a t  2000° F. 
general ly  compared wel l  with the recent  experimental data. 

D a t a  f o r  the  l i q u i d  propert ies  reported by WADD (ref. 1) i n  1961 

The l a r g e s t  disagreement i n  t h e  vapor propert ies  w a s  i n  the  value of spe- 
c i f i c  heat,  where the  difference between the  several  sources w a s  over 100 per- 
cent a t  2000° F. 
showed good agreement with the values derived i n ' t h e  recent determinations a t  
t h e  lower temperatures, but d i f fe red  s i g n i f i c a n t l y  a t  the  higher temperatures. 
In  general, t h e  differences between the  reported sources increased as t h e  tem- 
perature  increased. 
termination of the  v iscos i ty  or thermal conductivity of t h e  saturated vapor. 

The theore t ica l  vapor property values reported by WADD ( r e f .  1) 

A t  t h i s  time there  has been no successf'ul experimental de- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 30, 1965. 
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